Malaria Case Studies

Andrea K. Boggild, MSc, MD, DTMH, FRCPC
Clinical Director, Tropical Disease Unit, UHN-TGH
Assistant Professor, Department of Medicine, University of Toronto
Parasitology Lead, Public Health Ontario Laboratories

Disclosure of Potential Conflict of Interest

- Financial Disclosures
 - Research / Grant support – Public Health Agency of Canada; Public Health Ontario
Clinical Case

- 60 year-old previously well, Canadian-born man, working in rural Ghana x 3 months 1 year ago
- Intermittently adherent to mefloquine ppx
- Presents with a 3-week history of fever, fatigue, and 25-lb weight loss

- On exam, febrile (T 40), tachycardic, mildly tachypneic, looks unwell
The most likely explanation for the malaria microscopy and RDT pattern is:

- Expired RDT kit
- Infection with Plasmodium ovale
- Infection with Plasmodium malariae
- Absence of malaria infection
Malaria due to *P. ovale*

- Increasing importation of *P. ovale* to Ontario in the past 2 years from West Africa
- *P. ovale* may have a prolonged incubation and present many months after exposure
- RDT assays have poor sensitivity for non-falciparum malaria, but *P. ovale* in particular
- On microscopy, *P. ovale* will classically demonstrate Schuffner’s dots, elongation and enlargement of RBCs, and comet-shaped RBCs

Table 2. Characteristics of Imported Cases of Malaria among 2822 U.S. Travelers from 1992 through 1998.

<table>
<thead>
<tr>
<th>Plasmodium Species</th>
<th>No. of Cases</th>
<th>Early Onset (≤2 mo after Return)</th>
<th>Late Onset (>2 mo after Return)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Use of Effective Prophylaxis</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>number (percent)</td>
<td>number (percent)</td>
<td>number (percent)</td>
</tr>
<tr>
<td>P. falciparum</td>
<td>1290</td>
<td>1231 (95.4)</td>
<td>167 (13.6)</td>
</tr>
<tr>
<td>P. vivax</td>
<td>1321</td>
<td>510 (38.6)</td>
<td>148 (29.0)</td>
</tr>
<tr>
<td>P. ovale</td>
<td>87</td>
<td>21 (24.1)</td>
<td>9 (42.9)</td>
</tr>
<tr>
<td>P. malariae</td>
<td>124</td>
<td>73 (58.9)</td>
<td>23 (31.5)</td>
</tr>
<tr>
<td>Total</td>
<td>2822</td>
<td>1835 (65.0)</td>
<td>347 (18.9)</td>
</tr>
</tbody>
</table>

RDT Assays

<table>
<thead>
<tr>
<th>Species</th>
<th>Overall Sensitivity of RDT Assays</th>
<th>Sensitivity of Binax at PHOL (vs real time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum</td>
<td>77.4—98.1%</td>
<td>93.4%</td>
</tr>
<tr>
<td>P. vivax</td>
<td>68.9%</td>
<td>78.3%</td>
</tr>
<tr>
<td>P. malariae</td>
<td>21.4—45.2%</td>
<td>79%</td>
</tr>
<tr>
<td>P. ovale</td>
<td>5.5—86.7%</td>
<td>31%</td>
</tr>
</tbody>
</table>

P. knowlesi – in travelers, 1/6 tests positive
Treatment of P. ovale

- Blood Schizonticide
 - Chloroquine
 - Atovaquone-Proguanil
- Tissue Schizonticide (radical cure)
 - Primaquine
G6PD Deficiency

<table>
<thead>
<tr>
<th>Class of Deficiency</th>
<th>Enzyme Activity</th>
<th>Ethnicities</th>
<th>Primaquine Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Severe deficiency; <1% G6PD activity; chronic HA</td>
<td>Sporadic mutation Hx neonatal jaundice</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>II G6PD<sub>Med</sub></td>
<td>Severe deficiency; 1-10% G6PD activity; acute HA with RBC stress</td>
<td>Asian males Mediterranean descent</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>III G6PD<sub>A</sub>-</td>
<td>Mild-to-Mod deficiency 10-60% activity Intermittent HA</td>
<td>Asians African Americans Hispanics</td>
<td>Cautious use as weekly PART; Mild hemolysis by d4</td>
</tr>
<tr>
<td>IV</td>
<td>Normal to mild deficiency; >60% activity; no hemolysis</td>
<td>Women</td>
<td>Regarded as safe</td>
</tr>
</tbody>
</table>

Case Resolution
Case Resolution

- Patient treated with Malarone
- G6PD testing revealed normal enzyme levels
- Radical cure was initiated with a 2-week course of primaquine, which the patient tolerated well
- He recovered uneventfully

Clinical Case

- 77 year-old Indian-born resident of India visiting Canada x 2 weeks
- Presents with a 16-day history of fever, anorexia, headache, myalgia, and fatigue
- Co-morbidities include diabetes and hypertension
- Febrile on examination in the ER
- CBC – Hb 97 g/L, WBC 7.3 bil/L, Platelets 81 bil/L
Malaria Diagnostics Workflow

1. EDTA Blood
 - Microscopy
 - Mixed Infection or Unable to Speciate
 - Immuno-Chromatography Test
 - Neg or Pf, Pv, Pm, Po
 - Neg or Pf or non-Pf
 - Discrepant Results
 - Resolve by Real Time PCR
 - Pf, Pv, Pm, Po, Pk
The most likely explanation for the malaria microscopy, RDT, and PCR pattern is:

- Expired RDT kit
- Infection with Plasmodium ovale
- Infection with Plasmodium malariae
- Absence of malaria infection

Further History

- For 6 weeks prior to arrival in Canada, he had been staying with other family in Massachusetts near the New Hampshire border
- Wooded area in the backyard, and patient endorsed finding ticks on his person
- Daughter removed a small dark foreign-body from the patient with tweezers upon arrival in Canada
Plasmodium vs Babesia

<table>
<thead>
<tr>
<th>Diagnostic Test</th>
<th>Babesia</th>
<th>Plasmodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy</td>
<td>Rings</td>
<td>Rings</td>
</tr>
<tr>
<td></td>
<td>Tetrads (Maltese Cross)</td>
<td>Schizonts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gametocytes</td>
</tr>
<tr>
<td>Malaria Rapid Diagnostic Test</td>
<td>Negative</td>
<td>Positive for Pf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less sensitive for non-Pf</td>
</tr>
<tr>
<td>PCR</td>
<td>Cross-reactive with standard 18S genus level assays</td>
<td>Logarithmic curve with lower ct value at parasitemia >1%</td>
</tr>
</tbody>
</table>

Clinical Case

- 28 year-old previously well, Ghanian-born woman, traveled home to VFR in urban Ghana x 1 month
- Presents 5 days after return home with a day of fever and chills
- Pre-travel advice obtained, Malarone prescribed and filled in Canada
- Patient took Malarone each day 1-hr before breakfast, and began her prophylaxis 1 day prior to departure from Canada
The most likely explanation for the malaria microscopy and RDT pattern is:

- Infection with P. falciparum malaria
- Inadequate absorption of atovaquone-proguanil
- Drug resistant P. falciparum infection
- All of the above

The most likely explanation for the malaria microscopy and RDT pattern is:

- Infection with P. falciparum malaria
- Inadequate absorption of atovaquone-proguanil
- Drug resistant P. falciparum infection
- All of the above
The most likely explanation for the malaria microscopy and RDT pattern is:

- Infection with *P. falciparum* malaria
- Inadequate absorption of atovaquone-proguanil
- Drug resistant *P. falciparum* infection
- All of the above
Atovaquone is highly lipophilic with low aqueous solubility and is therefore poorly absorbed unless consumed with a fatty meal.

Co-administration of atovaquone and a fatty meal leads to a 5-fold increase in maximum plasma concentration (Cmax) over fasting.

Serum Drug Concentrations

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Parasitemia (by thin film microscopy)</th>
<th>Expected plasma drug concentration</th>
<th>Plasma drug concentration(^a), atovaquone</th>
<th>Plasma drug concentration(^a), proguanil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 of illness</td>
<td>3%</td>
<td>Atovaquone: 11.5 µg/mL; Proguanil: 0.509 µg/mL</td>
<td>2 ng/mL (0.002 µg/mL)</td>
<td>1.3 ng/mL (0.0013 µg/mL)</td>
</tr>
<tr>
<td>Day 3 of illness</td>
<td><0.1%</td>
<td>Atovaquone(^b): 0.93 µg/mL; Proguanil(^b): 0.102 µg/mL (102 ng/mL)</td>
<td>1.3 ng/mL (0.0013 µg/mL)</td>
<td>0.7 ng/mL (0.0007 µg/mL)</td>
</tr>
</tbody>
</table>

\(^a\) By LC-MS/MS; limit of detection for UV-HPLC is 100 ng/mL.

\(^b\) Half-life of atovaquone is 59 h, and that of proguanil is 14.5 h [11].
The most likely explanation for the malaria microscopy and RDT pattern is:

- Infection with *P. falciparum* malaria
- Inadequate absorption of atovaquone-proguanil
- Drug resistant *P. falciparum* infection
- All of the above
Resistance to atovaquone results from a single point mutation in parasite cytochrome b, which leads to reduced binding affinity for atovaquone.

Resistance to proguanil involves the stepwise development of point mutations in the dhfr gene.
Anti-Malarial Resistance Marker Analysis

pfmdr1 gene. A→T nucleotide change may confer chloroquine resistance

Clinical Sample A
100% A – Wild Type

Clinical Sample B, mixed pop
58% T – Mutant
42% A – Wild Type

Sequencing results of *Plasmodium falciparum* isolate

- Cytochrome b Y268N/S/C = Y (wild type)
- DHFR C50R = C (wild type)
- DHFR N51I = I (mutant)
- DHFR C59R = R (mutant)
- DHFR S108N = N (mutant)

- Patient did not absorb atovaquone and then was left with proguanil monophylaxis in the setting of a triple-mutant *P. falciparum* infection
Clinical Case

- 16-year-old male volunteered in Ghana x 3 weeks in June and July, without malaria prophylaxis
- 10 days after return, presented to ER with 4-day hx fever, chills, HA, nausea, vomiting
- Past travel history – Kenya 1 year prior
- Physical Exam / Labs:
 - Hypotension
 - Platelets 19 bil/L
 - ALT 134, AST 106
Case Continued

- Thick and thin blood film positive for P. falciparum malaria, parasitemia 2.5%
- Malaria RDT positive for HRP-2 antigenemia
- Treated with a 3-day course of IV artesunate + po Malarone
- Clinically improved on day 5 of admission, and discharged home with negative blood smears, though HRP-2 remained detectable
- Follow-up 1 week post-discharge: asymptomatic

Case Continued

- One month later, patient returned to ER with 2-day hx of recurrent HA, nausea, and vomiting without fever
- Laboratory investigations benign
- Repeat malaria testing:
 - Thick and thin blood films positive, parasitemia <0.1%
 - RDT positive for isolated HRP-2 antigenemia
What could be going on here?
<table>
<thead>
<tr>
<th>Date</th>
<th>Parasite</th>
<th>Stages</th>
<th>Parasitemia (%)</th>
<th>ICT kit</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 28</td>
<td>Pf</td>
<td>Rings</td>
<td>2.5</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>July 28</td>
<td>Pf</td>
<td>Rings, Young trophs</td>
<td>1.2</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>July 29</td>
<td>Pf</td>
<td>Rings</td>
<td>2.0</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>July 29</td>
<td>Pf</td>
<td>Rings</td>
<td>0.1</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>July 30</td>
<td>Pf (based on ICT kit)</td>
<td>No parasites found</td>
<td>N/A</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>Aug 1</td>
<td>Pf (based on ICT kit)</td>
<td>No parasites found</td>
<td>N/A</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>Aug 3</td>
<td>Pf (based on ICT kit)</td>
<td>No parasites found</td>
<td>N/A</td>
<td>T1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>Sep 6</td>
<td>Po only Pf not seen</td>
<td>Growing and Mature Trophs of Po</td>
<td>< 0.1</td>
<td>T1 1+ T2 Neg</td>
<td>Both Pf and Po detected</td>
</tr>
<tr>
<td>Sep 7</td>
<td>Po only Pf not seen</td>
<td>Growing and Mature Trophs of Po</td>
<td>< 0.1</td>
<td>T1 1+ T2 Neg</td>
<td>Not done</td>
</tr>
<tr>
<td>Sep 10</td>
<td>Po only Pf not seen</td>
<td>Growing and Mature Trophs of Po</td>
<td>< 0.1</td>
<td>T1 1+ T2 Neg</td>
<td>Not done</td>
</tr>
</tbody>
</table>

Malaria J 2015;14:350.
Case Continued

- Patient treated with 3-day course of Malarone and resolved quickly.
- Species identification results then obtained, and patient treated with 4 doses of oral chloroquine and 14-day course of primaquine following G6PD testing.
- Follow-up 2 weeks post-treatment: asymptomatic, negative blood smears.

Clinical Case

- Healthy 11-month-old Canadian-born baby developed high fever 10-days following a 5-week VFR trip to Cameroon.
- 3-days into illness, presented to ED:
 - Looked generally well
 - Temp 38.9 C, vitals otherwise normal
 - CBC – Hb 62 g/L, WBC 11.6 bil/L, Platelets 134 bil/L
 - Bilirubin 55 umol/L
- Thin blood film revealed.......
Audience Question: Which of the following statements is True?

- The patient has mild disease therefore likely has non-falciparum malaria
- The patient has mild disease and so should be treated with oral therapy
- Given the high parasitemia, the patient should be admitted to the ICU, urgently dialysed, exchange transfused, and ventilated
- VFR is the most common travel reason associated with imported malaria in Canada
Clinical Case

- Started on iv artesunate and transfused 1 unit of PRBCs
- Defervesced by 48-hours with clearance of parasitemia
- Stepped down to po atovaquone-proguanil to complete a 7-day course
- 1-month post-discharge remained well and blood films negative

Clinical Case

- 1-month prior to child’s illness, mother developed *P. falciparum* malaria while in Cameroon and responded to a 3-day course of iv therapy overseas
- Fantastic parasitemia in setting of clinically mild illness?
- Child was breastfed from birth and throughout mother’s and own illness
Inhibitory Factors in Breastmilk, Maternal and Infant Sera Against *in vitro* Growth of *Plasmodium falciparum* Malaria Parasite

- 144 Nigerian maternal milk samples with paired mother and infant sera
- Significant antibody titres to all stages of *P. falciparum* in breastmilk
- Significant in *vitro* growth inhibition of *P. falciparum* by whole breastmilk and breastmilk constituents such as lactoferrin and sIgA

Therefore suggest a protective *in vivo* role for breastmilk in the possible modulation of malaria frequency, severity and complications.

<table>
<thead>
<tr>
<th>Reason for travel</th>
<th>Total no. of cases</th>
<th>P. falciparum</th>
<th>Severe or cerebral malaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (n = 18,870)</td>
<td>456</td>
<td>282</td>
<td>26</td>
</tr>
<tr>
<td>Tourism (n = 8136)</td>
<td>54</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>Immigration (n = 4967)</td>
<td>62</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>VFR (n = 1966)</td>
<td>174</td>
<td>117</td>
<td>5</td>
</tr>
<tr>
<td>Missionary, volunteer, research, aid (n = 1656)</td>
<td>73</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>Business (n = 1643)</td>
<td>77</td>
<td>51</td>
<td>7</td>
</tr>
</tbody>
</table>
5 Key Points – Malaria

- Microscopy remains the gold standard diagnostic tool and is the only technique that can reliably distinguish asexual from sexual parasitemia
- RDTs are designed to detect *P. falciparum* with >95% sensitivity at parasitemia of 0.004% (200 parasites/uL)
- Sensitivity of RDTs for non-falciparum malaria can be as low as 15-30% and is reduced for all species with very low parasitemias
- Babesiosis can produce false positive results on microscopy and standard genus-level *Plasmodium* PCR assays
- Thick and thin smears ± RDT should be performed on all febrile returned travelers from risk areas even in the setting of seemingly appropriate prophylaxis

Contact Information

Dr. Andrea K. Boggild
Tropical Disease Unit
Toronto General Hospital
Dept. of Medicine, University of Toronto
200 Elizabeth St., 13EN-218
Toronto, ON M5G 2C4
Email – andrea.boggild@utoronto.ca